LAMMPS Builds with ML-IAP and KOKKOS packages
ML-IAP is an optional package to use machine-learned interatomic potentials. Suppose that you have C/C++ compiler, MPI libaries and CUDA Toolkit 12.x installed in your system. To build ML-IAP and KOKKOS, you can follow this cmake configuration:
python3 -m venv mliap-env
source mliap-env/bin/activate
pip install torch==2.5.0+cu121 torchvision==0.20.0+cu121 torchaudio==2.5.0+cu121 --index-url https://download.pytorch.org/whl/cu121
pip install "cuequivariance==0.4.0" "cuequivariance-ops-cu12==0.4.0" "cuequivariance-torch-cu12==0.4.0"
pip install mace-torch
pip install cupy-cuda12x
pip install numpy Cython
mkdir build
cd build
cmake -C ../cmake/presets/basic.cmake \
-D BUILD_MPI=yes -D BUILD_OMP=ON -D BUILD_SHARED_LIBS=ON \
-D PKG_ML-IAP=ON -D PKG_ML-SNAP=ON -D PKG_ML-PACE=ON -D MLIAP_ENABLE_PYTHON=on -D PKG_PYTHON=ON \
-D PKG_KOKKOS=ON -D Kokkos_ARCH_PASCAL60=off -D Kokkos_ARCH_AMPERE80=ON -D Kokkos_ENABLE_CUDA=yes -D Kokkos_ENABLE_OPENMP=yes \
-D CMAKE_CXX_STANDARD=17 -D CMAKE_CXX_STANDARD_REQUIRED=ON \
-D CMAKE_CXX_COMPILER=`which mpicxx` -D MPI_C_COMPILER=`which mpicc` ../cmake
make -j4
make install-python
Note that you need to install PyTorch and other Python packages in a virtual environment before building LAMMPS with ML-IAP. The above example uses CUDA 12.1, so make sure to adjust the versions according to your CUDA installation.